Topic 2: Apply Laws of Exponents

Law	Words	Algebra	Example
Product of Powers			
Quotient of Powers			
Power of a Power			
Power of a Product			
Power of a Quotient			
Negative Exponent			
Zero Exponent Exponent			

Scientific Notation	
Significant Digits	

Lesson 1: Use Laws of Integer Exponents Day 1

Goal: Apply the Laws of Exponents to integer exponents Evaluate expressions with integer exponents

Product of Powers Law: * \qquad must be the same.

1. Keep the \qquad
2. \qquad the exponents and evaluate

Essential Understanding You can use a property of exponents to multiply powers with the same base.
You can write a product of powers with the same base, such as $3^{4} \cdot 3^{2}$, using one exponent.

Problem 1 Multiplying Powers

What is each expression written using each base only once?
(A) $12^{4} \cdot 12^{3}=$

B $(-5)^{-2}(-5)^{7}=$

Got It? 1. What is each expression written using each base
a. $8^{3} \cdot 8^{6}$

c. $9^{-3} \cdot 9^{2} \cdot 9^{6}$

When variable factors have more than one base, be careful to combine ONLY those powers with the same base.

Problem 2 Multiplying Powers in Algebraic Expressions What is the simplified form of each expression?

B $2 a \cdot 9 b^{4} \cdot 3 a^{2}=$
a. $5 x^{4} \cdot x^{9} \cdot 3 x$
b. $-4 c^{3} \cdot 7 d^{2} \cdot 2 c^{-2}$

Work backwards. Using the Multiplication Rule for exponents, rewrite the expressions.

1. 6^{7}
2. $8 b^{4}$
3. $3^{5} x^{12}$

Lesson 1: Use Laws of Integer Exponents Day 2

Quotient of Powers Law: * \qquad must be the same.

1. Keep the \qquad
2. \qquad the exponents and evaluate

Essential Understanding You can use properties of exponents to divide powers with the same base.

You can use repeated multiplication to simplify quotients of powers with the same base. Expand the numerator and the denominator. Then divide out the common factors.

$$
\frac{4^{5}}{4^{3}}
$$

Problem 1 Dividing Algebraic Expressions
What is the simplified form of each expression?

$$
\text { (A) } \frac{m^{2} n^{4}}{m^{5} n^{3}}
$$

You can use repeated multiplicatiop to simplify a quotient raised to a power.

$$
\left(\frac{x}{y}\right)^{3}=
$$

Extra examples for class review:

1. $\frac{9^{7}}{9^{4}}$
2. $\frac{4.2^{6}}{4.2^{5}}$
3. $\frac{(-8)^{8}}{(-8)^{4}}$

Work backwards. Use division properties of exponents to find an equivalent expression:

1. 4^{3}
2. 5^{6}
3. $9 d^{4}$

Lesson 1: Use Laws of Integer Exponents Day 3

Power of a Power Law: *Raise everything to the \qquad

1. Keep the \qquad
2. \qquad the exponents

Problem 1 Simplifying a Power Raised to a Power

(A) What is the simplified form of $\left(n^{4}\right)^{7}$?

Got It? 1. What is the simplified form of each expression in parts (a)-(d)?

$$
\left(p^{5}\right)^{4}
$$

$$
\left(5 x^{3}\right)^{2}
$$

What is the simplified form of each expression?
$\left(7 m^{9}\right)^{3}$

Work backwards. Use power properties of exponents to find an equivalent expression:

1. c^{9}
2. 4^{8}
3. $5^{10} x^{6}$

Power of a Product Law:

* \qquad must be the same.

1. \qquad the bases \& keep the exponent
2. Evaluate the \qquad
$4^{-2} \cdot 5^{-2}$
$1.3^{-3} \cdot 0.2^{-3}$
$(-3)^{-1} \cdot 8^{-1}$

Power of a Quotient Law: Raise the numerator and denominator to the power individually
or ___ first if possible

1. \qquad the bases \& keep the exponent
2. Evaluate the \qquad

$$
\left(\frac{5^{9}}{5^{5}}\right)^{2}
$$

$$
\left(\frac{x^{6}}{x^{5}}\right)^{4}
$$

$$
\left(\frac{2^{3}}{1^{9}}\right)^{2}
$$

Lesson 1: Use Laws of Integer Exponents Day 4

The Negative Exponent Law: Raising a number to a \qquad of -1 is the
same as finding the \qquad of that number.

Essential Understanding You can extend the idea of exponents to include zero and negative exponents.
Consider $3^{3}, 3^{2}$, and 3^{1}. Decreasing the exponents by 1 is the same as dividing by 3 . If
 you continue the pattern, 3^{0} equals 1 and 3^{-1} equals $\frac{1}{3}$.

Properties Zero and Negative Exponents
Zero as an Exponent For every nonzero number $a, a^{0}=1$.
Examples $4^{0}=1 \quad(-3)^{0}=1 \quad(5.14)^{0}=1$
Negative Exponent For every nonzero number a and integer $n, a^{-n}=\frac{1}{a^{n}}$.
Examples $7^{-3}=\frac{1}{7^{3}} \quad(-5)^{-2}=\frac{1}{(-5)^{2}}$

Why can't you use 0 as a base with zero exponents? The first property on the previous page implies the following pattern.

$$
3^{0}=1 \quad 2^{0}=1 \quad 1^{0}=1 \quad 0^{0}=1
$$

However, consider the following pattern.

$$
0^{3}=0 \quad 0^{2}=0 \quad 0^{1}=0 \quad 0^{0}=0
$$

It is not possible for 0^{0} to equal both 1 and 0 . Therefore 0^{0} is undefined.
Why can't you use 0 as a base with a negative exponent? Using 0 as a base with a negative exponent will result in division by zero, which is undefined.

Problem 1 Simplifying Powers

What is the simplified form of each expression?
(A) 9^{-2}

Got It?
What is the simplified form of each expression?
a. 4^{-3}
b. $(-5)^{0}$

$$
\text { c. }(-4)^{-2}
$$

Problem 2 Simplifying Exponential Expressions
What is the simplified form of each expression?
(A $5 a^{3} b^{-2}$

B $\frac{1}{x^{-5}}$

Got It? 2. What is the simplified form of each expression?

a. x^{-9}
b. $\frac{1}{n^{-3}}$
c. $4 c^{-3} b$
d. $\frac{2}{a^{-3}}$

Extra Class Examples:
$(1 / 2)^{-1}$
4^{-5}
5^{-7}
m^{-9}

The Zero Exponent Law: Raising a number to a power of zero always equals \qquad .

Use the laws to evaluate:

$$
\left(2.38^{-5}\right)^{0}+\left[\left(\frac{604}{729}\right)^{-1}\right]^{-1}+\frac{9^{-3}}{5^{-3}}
$$

Work backwards. Use of exponents all the Laws of Exponents find equivalent expressions:

1. Select all the expressions equivalent to $9 b^{2}$.
a. $1 / 3^{-2} b^{-2}$
b. $(3 b)^{2}$
c. $3 b \cdot 3 b$
d. $3^{4} b^{4} / 3^{2} b^{2}$

Lesson 3: Understand Scientific Notation

Goal: Use scientific notation to write very large or small numbers.
Convert numbers written in scientific notation into standard form.

Did you know....?

Earth $=12.76 \times 10^{+6}=12,760,000$ meters wide
(12.76 million meters)
Plant Cell $=12.76 \times 10^{-6}=0.00001276$ meters wide (12.76 millionths of a meter)

Key Concept Scientific Notation

Words Scientific notation is when a number is written as the product of a factor and an integer power of 10 . The factor must be greater than or equal to 1 and less than 10 .

Symbols $a \times 10^{n}$, where $1 \leq a<10$ and n is an integer

Example $425,000,000=4.25 \times 10^{8}$

Powers of Ten

Multiplying a factor by a positive power of 10 woves the decimel point rightMultiplying a factor by a wegative power of 10 moves
the decimed point left.

Complete the table below.

Expression	Product	Expression	Product
$4.7 \times 10^{1}=47 \times 10$	47	$4.7 \times 10^{-1}=4.7 \times \frac{1}{10}$	0.47
$4.7 \times 10^{2}=4.7 \times 100$		$4.7 \times 10^{-2}=4.7 \times \frac{1}{100}$	
$4.7 \times 10^{3}=4.7 \times 1,000$		$4.7 \times 10^{-3}=4.7 \times \frac{1}{1000}$	
$4.7 \times 10^{4}=4.7 \times$		$4.7 \times 10^{-4}=4.7 \times$	

Examples

Write each number in standard form.

1. 5.34×10^{4}
2. 3.27×10^{-3}

Examples

Write each number in scientific notation.
3. 3,725,000
4. 0.000316

Example: comparing and ordering with scientific notation

5. Refer to the table at the right. Order the countries according to the amount of money visitors spent in the United States from greatest to least.

Step 1

Group the numbers by their power of 10 .

Dollars Spent by International Visitors in the U.S	
Country	Dollars Spent
Canada	1.03×10^{7}
India	1.83×10^{6}
Mexico	7.15×10^{6}
United Kingdom	1.06×10^{7}

Step 2 Order the
 decimals.

Extra In Class Notes:

When using calculators to represent very large and very small numbers with an exponent indicated as "E", instruction relates the number following "E" as the power of 10 .

Ex.
Roderick is comparing two numbers shown in scientific notation on his calculator. The first number was displayed as 2.3147 E 27 and the second number was displayed as 3.5982E-5.

What are these 2 numbers on the calculator written in scientific notation?
\& \qquad
\qquad of \qquad factors.
\qquad . \qquad

Scientific Notation involves moving the \qquad not counting zeros or digits.

Practice Examples:

Write the numbers in Standard Form
$2.65 \cdot 10^{7}$

Write the numbers in Scientific Notation
2,865,000
$1.03 \cdot 10^{-8}$
0.00012

Order the number of visitors from least to greatest

U.S. City	Number of Visitors
Boston	7.21×10^{5}
Las Vegas	1.3×10^{6}
Los Angeles	2.2×10^{6} Grade 8: Topic 2
Metro D.C. area	9.01×10^{5}

Which number or numbers are NOT written correctly in Scientific Notation？
$1.036 \cdot 10^{6}$
$0.45 \cdot 10^{-7}$
$5.60 \cdot 10^{2}$

Significant digits： \qquad digits of a number and any zeros in between them （zeros at the end of a number can be significant if they are used for a precise measurement）

$\begin{aligned} & \text { 毕 } \\ & \text { yy } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 感 } \\ & \text { n } \end{aligned}$	$\stackrel{\sim}{\omega}$	$\begin{aligned} & \text { ® } \\ & \text { E5 } \end{aligned}$		步		号 莈 0 0 0
10^{3}	10^{2}	10^{1}	10^{0}		10^{-1}	10^{-2}	10^{-3}
3	2	4	0		0	0	0
			0		3	2	4

Lesson 4：Operations with Numbers in Scientific Notation

Goal：apply number properties to calculations with numbers in scientific notation

Operations with Scientific Notation：use＂LARS＂
 LARS stands for＂Left Add，Right Sultract＂

Addition:

1) Make the powers of 10 \qquad
2) Add the \qquad .
3) Keep the powers of \qquad .
4) Put the answer in \qquad .

Try These:
A) $3.4 \times 10^{-4}+4.12 \times 10^{3}$
B) $6.5 \times 10^{4}+1.004 \times 10^{2}$

Subtracting:

1) Make the powers of 10
2) Subtract the
3) Keep the powers of \qquad the \qquad .
4) Put the answer in \qquad .

Try These:
A) $7.4 \times 10^{4}-8.15 \times 10^{3}$
B) $1.5 \times 10^{7}-8.104 \times 10^{9}$

Multiplying:

1) Multiply the \qquad .
2) Multiply the powers of 10
(Remember the rule for multiplying with exponents: keep the ___ and add the \qquad .)
3) Put the answer in \qquad .

Try These:
\ddagger
A) $\left(8.5 \times 10^{4}\right)\left(5.12 \times 10^{3}\right)$
B) $\left(5.2 \times 10^{2}\right)\left(6 \times 10^{5}\right)$

Dividing:

1) Divide the \qquad .
2) Divide the \qquad .
(Remember the rule for dividing with exponents: keep the \qquad and subtract the \qquad)
3) Put the answer in \qquad _.

Try These:
A) $\frac{5.85 \times 10^{4}}{3.9 \times 10^{6}}$
B) $\frac{1.86 \times 10^{8}}{3.1 \times 10^{-4}}$

Which expression has the least value?

Lesson 6: Multiply Linear Expressions

To \qquad a sum by a number- multiply each \qquad
by the number \qquad .
Example: $2(7+4)=2 \times 7+2 \times 4$
$a(b+c)=a b+a c$

Use the Distributive Property to Rewrite Expressions
$2 a(a+4) 3 b(13+b)$
$1 / 2 a(2 a-8)$
$-3 z(10 z+14)$
$-4(3 u-2 v)$
$-1.6 a(0.3 a-4 b)$
$(f+2)(-6.2 f)$
$1 / 3 m(6 m+12 n)$

Lesson 7: Factor Algebraic Expressions

: a number, a variable, or a number and variable multiplied together. (there is no + or - in a monomial)

To factor a number means: write it as a \qquad of its factors.

Identify the GCF by writing out the factors of a number and variable

12

28c
15xy

42 mn
18a
$14 m n$
20ab

To Factor an Expression:

1. Identify the GCF (use upside down division)
2. Write it outside of $a()$
3. Divide each term by the GCF and write that quotient inside the ()
$14 x+7 y$
$4 x-28$
$6 x+35$
$3 x+33 y$
